Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Biochemical Journal, 2(476), p. 275-292, 2019

DOI: 10.1042/bcj20180691

Links

Tools

Export citation

Search in Google Scholar

Adaptation of the Staphylococcus aureus leukocidin LukGH for the rabbit host by protein engineering

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Host defense against Staphylococcus aureus greatly depends on bacterial clearance by phagocytic cells. LukGH (or LukAB) is the most potent staphylococcal leukocidin towards human phagocytes in vitro, but its role in pathogenesis is obscured by the lack of suitable small animal models because LukGH has limited or no cytotoxicity towards rodent and rabbit compared with human polymorphonuclear cells (PMNs) likely due to an impaired interaction with its cellular receptor, CD11b. We aimed at adapting LukGH for the rabbit host by improving binding to the rabbit homolog of CD11b, specifically its I-domain (CD11b-I). Targeted amino acid substitutions were introduced into the LukH polypeptide to map its receptor interaction site(s). We found that the binding affinity of LukGH variants to the human and rabbit CD11b-I correlated well with their PMN cytotoxicity. Importantly, we identified LukGH variants with significantly improved cytotoxicity towards rabbit PMNs, when expressed recombinantly (10–15-fold) or by engineered S. aureus strains. These findings support the development of small animal models of S. aureus infection with the potential for demonstrating the importance of LukGH in pathogenesis.