Published in

Portland Press, Emerging Topics in Life Sciences, 3(3), p. 313-326, 2019

DOI: 10.1042/etls20180148

Links

Tools

Export citation

Search in Google Scholar

CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives

Journal article published in 2019 by Gaetano Naso, Anastasia Petrova ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Genodermatoses constitute a clinically heterogeneous group of devastating genetic skin disorders. Currently, therapy options are largely limited to symptomatic treatments and although significant advances have been made in ex vivo gene therapy strategies, various limitations remain. However, the recent technical transformation of the genome editing field promises to overcome the hurdles associated with conventional gene addition approaches. In this review, we discuss the need for developing novel treatments and describe the current status of gene editing for genodermatoses, focusing on a severe blistering disease called epidermolysis bullosa (EB), for which significant progress has been made. Initial research utilized engineered nucleases such as transcription activator-like effector nucleases and meganucleases. However, over the last few years, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) have upstaged older generation gene editing tools. We examine different strategies for CRISPR/Cas9 application that can be employed depending on the type and position of the mutation as well as the mode of its inheritance. Promising developments in the field of base editing opens new avenues for precise correction of single base substitutions, common in EB and other genodermatoses. We also address the potential limitations and challenges such as safety concerns and delivery efficiency. This review gives an insight into the future of gene editing technologies for genodermatoses.