Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 5(19), p. 2845-2860, 2019

DOI: 10.5194/acp-19-2845-2019

Links

Tools

Export citation

Search in Google Scholar

Characterization of ozone production in San Antonio, Texas, using measurements of total peroxy radicals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Observations of total peroxy radical concentrations ([XO2] ≡ [RO2] + [HO2]) made by the Ethane CHemical AMPlifier (ECHAMP) and concomitant observations of additional trace gases made on board the Aerodyne Mobile Laboratory (AML) during May 2017 were used to characterize ozone production at three sites in the San Antonio, Texas, region. Median daytime [O3] was 48 ppbv at the site downwind of central San Antonio. Higher concentrations of NO and XO2 at the downwind site also led to median daytime ozone production rates (P(O3)) of 4.2 ppbv h−1, a factor of 2 higher than at the two upwind sites. The 95th percentile of P(O3) at the upwind site was 15.1 ppbv h−1, significantly lower than values observed in Houston. In situ observations, as well as satellite retrievals of HCHO and NO2, suggest that the region was predominantly NOx-limited. Only approximately 20 % of observations were in the VOC-limited regime, predominantly before 11:00 EST, when ozone production was low. Biogenic volatile organic compounds (VOCs) comprised 55 % of total OH reactivity at the downwind site, with alkanes and non-biogenic alkenes responsible for less than 10 % of total OH reactivity in the afternoon, when ozone production was highest. To control ozone formation rates at the three study sites effectively, policy efforts should be directed at reducing NOx emissions. Observations in the urban center of San Antonio are needed to determine whether this policy is true for the entire region.