Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Climate of the Past, 1(15), p. 307-334, 2019

DOI: 10.5194/cp-15-307-2019

Links

Tools

Export citation

Search in Google Scholar

Inconsistencies between observed, reconstructed, and simulated precipitation indices for England since the year 1650 CE

Journal article published in 2019 by Oliver Bothe ORCID, Sebastian Wagner ORCID, Eduardo Zorita ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The scarcity of long instrumental records, uncertainty in reconstructions, and insufficient skill in model simulations hamper assessing how regional precipitation changed over past centuries. Here, we use standardized precipitation data to compare a regional climate simulation, reconstructions, and long observational records of seasonal (March to July) mean precipitation in England and Wales over the past 350 years. The Standardized Precipitation Index is a valuable tool for assessing agreement between the different sources of information, as it allows for a comparison of the temporal evolution of percentiles of the precipitation distributions. These evolutions are not consistent among reconstructions, a regional simulation, and instrumental observations for severe and extreme dry and wet conditions. The lack of consistency between the different data sets may be due to the dominance of internal climate variability over the impact of natural exogenous forcing conditions on multi-decadal timescales. The disagreement between sources of information reduces our confidence in inferences about the origins of hydroclimate variability for small regions. However, it is encouraging that there is still some agreement between a regional simulation and observations. Our results emphasize the complexity of hydroclimate changes during the recent centuries and stress the necessity of a thorough understanding of the processes affecting forced and unforced precipitation variability.