Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, IOP Conference Series: Materials Science and Engineering, 6(609), p. 062029, 2019

DOI: 10.1088/1757-899x/609/6/062029

Links

Tools

Export citation

Search in Google Scholar

Tuning approach of dynamic control strategy of temperature set-point for existing commercial buildings

Journal article published in 2019 by Zakia Afroz ORCID, Gm Shafiullah, Tania Urmee, Gary Higgins
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Indoor environmental parameters especially the air temperature have substantial effect on energy consumption in commercial buildings and indoor thermal comfort. This study presents a tuning approach of dynamic control strategy of temperature set-point with a view to improving occupants’ thermal comfort while simultaneously minimizing energy consumption. To determine optimum temperature set-points in response to ambient conditions, this study investigates the thermal comfort conditions of a commercial building based on real time series data. To quantify thermal environmental conditions for human occupancy, this study uses the graphical comfort zone method proposed by ASHRAE Standard 55-2017 through a rigorous analysis. Based on this analysis the study narrows down the comfort range in the context of seasonal variations and proposes tuning the Master Temperature Set-Points (MTSP) with 4.8°C variable linear band between upper and lower temperatures dependent on a simple algorithm. This re-setting strategy of temperature set-point ultimately offers extended lower and upper boundary limit for variable linear band. Extension of linear band for MTSP reduces the gap between temperature set-point and outdoor temperature which ultimately offers less heating and cooling energy consumption. Results show that implementation of this proposed approach would lead to monthly 2707.94 kWh energy savings either from heating or cooling or both during winter and summer season.