Published in

Oxford University Press (OUP), The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 2019

DOI: 10.1093/gerona/glz246

Links

Tools

Export citation

Search in Google Scholar

DNA methylation age and physical and cognitive ageing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background DNA methylation (DNAm) age acceleration (AgeAccel) has been shown to be predictive of all-cause mortality but it is unclear what functional aspect/s of ageing it captures. We examine associations between four measures of AgeAccel in adults aged 45-87 years and physical and cognitive performance and their age-related decline. Methods AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno and AgeAccelGrim were calculated in the Medical Research Council National Survey of Health and Development (NSHD), National Child Development Study (NCDS) and TwinsUK. Three measures of physical (grip strength, chair rise speed and forced expiratory volume in one second[FEV1]) and two measures of cognitive (episodic memory and mental speed) performance were assessed. Results AgeAccelPheno and AgeAccelGrim, but not AgeAccelHannum and AgeAccelHorvath were related to performance in random effects meta-analyses (n=1388-1685). For example, a one year increase in AgeAccelPheno/AgeAccelGrim was associated with a 0.01ml[95%CI:0.01,0.02]/0.03ml[95%CI:0.01,0.05] lower mean FEV1. In NSHD, AgeAccelPheno and AgeAccelGrim at 53 years were associated with age-related decline in performance between 53 and 69 years as tested by linear mixed models (p<0.05). In a subset of NSHD participants(n=482), there was little evidence that change in any AgeAccel measure was associated with change in performance conditional on baseline performance. Conclusions We found little evidence to support associations between the first generation of DNAm-based biomarkers of ageing and age-related physical or cognitive performance in mid-life to early old age. However, there was evidence that the second generation biomarkers, AgeAccelPheno and AgeAccelGrim, could act as makers of an individual’s health-span as proposed.