Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2019

DOI: 10.1093/mnras/stz2924

Links

Tools

Export citation

Search in Google Scholar

Implications of dark matter cascade decay from DAMPE, HESS, Fermi-LAT and AMS02 data

Journal article published in 2019 by Yu Gao, Yin-Zhe Ma ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Recent high-energy cosmic e± measurement from the DArk Matter Particle Explorer (DAMPE) satellite confirms the deviation of total cosmic ray electron spectrum above 700-900 GeV from a simple power law. In this paper we demonstrate that the cascade decay of dark matter can account for DAMPE’s TeV e+e− spectrum. We select the least constraint DM decay channel into four muons as the benchmark scenario, and perform an analysis with propagation variance in both DM signal and the Milky Way’s electron background. The best-fit of the model is obtained for joint DAMPE, Fermi-LAT, H.E.S.S. high energy electron data sets, and with an $\mathcal {O}(10^{26})$ second decay lifetime, which is consistent with existing gamma ray and cosmic microwave background limits. We compare the spectral difference between the cascade decay of typical final-state channels. The least constrained 4μ channels give good fits to the electron spectrum’s TeV scale down-turn, yet their low energy spectrum has tension with sub-TeV positron data from AMS02. We also consider a three-step cascade decay into eight muons, and also a gamma-ray constrained 4μ, 4b mixed channel, to demonstrate that a further softened cascade decay signal would be required for the agreement with all the data sets.