Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 20(11), p. 2384, 2019

DOI: 10.3390/rs11202384

Links

Tools

Export citation

Search in Google Scholar

Assessing Multiple Years’ Spatial Variability of Crop Yields Using Satellite Vegetation Indices

Journal article published in 2019 by Abid Ali ORCID, Roberta Martelli ORCID, Flavio Lupia ORCID, Lorenzo Barbanti ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Assessing crop yield trends over years is a key step in site specific management, in view of improving the economic and environmental profile of agriculture. This study was conducted in a 11.07 ha area under Mediterranean climate in Northern Italy to evaluate the spatial variability and the relationships between six remotely sensed vegetation indices (VIs) and grain yield (GY) in five consecutive years. A total of 25 satellite (Landsat 5, 7, and 8) images were downloaded during crop growth to obtain the following VIs: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), Green Normalized Difference Vegetation Index (GNDVI), Green Chlorophyll Index (GCI), and Simple Ratio (SR). The surveyed crops were durum wheat in 2010, sunflower in 2011, bread wheat in 2012 and 2014, and coriander in 2013. Geo-referenced GY and VI data were used to generate spatial trend maps across the experimental field through geostatistical analysis. Crop stages featuring the best correlations between VIs and GY at the same spatial resolution (30 m) were acknowledged as the best periods for GY prediction. Based on this, 2–4 VIs were selected each year, totalling 15 VIs in the five years with r values with GY between 0.729** and 0.935**. SR and NDVI were most frequently chosen (six and four times, respectively) across stages from mid vegetative to mid reproductive growth. Conversely, SAVI never had correlations high enough to be selected. Correspondence analysis between remote VIs and GY based on quantile ranking in the 126 (30 m size) pixels exhibited a final agreement between 64% and 86%. Therefore, Landsat imagery with its spatial and temporal resolution proved a good potential for estimating final GY over different crops in a rotation, at a relatively small field scale.