Published in

Semina: Ciências Agrárias, 6Supl2(40), p. 2917, 2019

DOI: 10.5433/1679-0359.2019v40n6supl2p2917

Links

Tools

Export citation

Search in Google Scholar

Nitrogen variable rate in pastures using optical sensors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The use of optical sensors to identify the nutritional needs of agricultural crops has been the subject of several studies using precision agriculture techniques. In this work, we sought to overcome the lack of research evaluating the use of these techniques in the management of nitrogen (N) fertilizer in pastures. We evaluated the methodology of the nitrogen sufficiency index (NSI) in N management at variable rates (VR) using a portable chlorophyll meter. In addition, the use of color vegetation indices generated from a digital camera was evaluated as a low-cost alternative. The work was conducted in four management cycles at different times of year, evaluating the productivity and quality of Brachiaria brizantha cv. Xaraés grass. Three NSIs (0.85, 0.90 and 0.95) were evaluated, applying complementary doses of N according to the response of monitored plots using a chlorophyll meter and comparing the productivity and leaf N content of these treatments to the reference treatment (TREF), which received a single dose of N (150 kg ha-1). Together with these treatments, plots without N application (control) were analyzed, totaling five treatments with six replications in a completely randomized design. The dry mass productivity and N leaf concentration of the VR treatments were statistically equal to TREF in all management cycles (P < 0.05). Most color vegetation indices correlated significantly (P < 0.05) to the chlorophyll readings. The use of NSI methodology in pastures allows the same productivity gains, with significant input savings. In addition, the use of digital cameras presents itself as a viable alternative to monitoring the N status in pastures.