Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(490), p. 1156-1165, 2019

DOI: 10.1093/mnras/stz2624

Links

Tools

Export citation

Search in Google Scholar

Three-dimensional simulations of non-resonant streaming instability and particle acceleration near non-relativistic astrophysical shocks

Journal article published in 2019 by Allard Jan van Marle ORCID, Fabien Casse, Alexandre Marcowith
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We use particle-in-magnetohydrodynamics-cells to model particle acceleration and magnetic field amplification in a high-Mach, parallel shock in three dimensions and compare the result to 2D models. This allows us to determine whether 2D simulations can be relied upon to yield accurate results in terms of particle acceleration, magnetic field amplification, and the growth rate of instabilities. Our simulations show that the behaviour of the gas and the evolution of the instabilities are qualitatively similar for both the 2D and 3D models, with only minor quantitative differences that relate primarily to the growth speed of the instabilities. The main difference between 2D and 3D models can be found in the spectral energy distributions (SEDs) of the non-thermal particles. The 2D simulations prove to be more efficient, accelerating a larger fraction of the particles and achieving higher velocities. We conclude that, while 2D models are sufficient to investigate the instabilities in the gas, their results have to be treated with some caution when predicting the expected SED of a given shock.