Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology - Lung Cellular and Molecular Physiology, 4(317), p. L510-L521, 2019

DOI: 10.1152/ajplung.00062.2019

Links

Tools

Export citation

Search in Google Scholar

GDF15 is an epithelial-derived biomarker of idiopathic pulmonary fibrosis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Idiopathic pulmonary fibrosis (IPF) is the most common and devastating of the interstitial lung diseases. Epithelial dysfunction is thought to play a prominent role in disease pathology, and we sought to characterize secreted signals that may contribute to disease pathology. Transcriptional profiling of senescent type II alveolar epithelial cells from mice with epithelial-specific telomere dysfunction identified the transforming growth factor-β family member, growth and differentiation factor 15 ( Gdf15), as the most significantly upregulated secreted protein. Gdf15 expression is induced in response to telomere dysfunction and bleomycin challenge in mice. Gdf15 mRNA is expressed by lung epithelial cells, and protein can be detected in peripheral blood and bronchoalveolar lavage following bleomycin challenge in mice. In patients with IPF, GDF15 mRNA expression in lung tissue is significantly increased and correlates with pulmonary function. Single-cell RNA sequencing of human lungs identifies epithelial cells as the primary source of GDF15, and circulating concentrations of GDF15 are markedly elevated and correlate with disease severity and survival in multiple independent cohorts. Our findings suggest that GDF15 is an epithelial-derived secreted protein that may be a useful biomarker of epithelial stress and identifies IPF patients with poor outcomes.