Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-50733-9

Links

Tools

Export citation

Search in Google Scholar

Optimised insert design for improved single-molecule imaging and quantification through CRISPR-Cas9 mediated knock-in

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe use of CRISPR-Cas9 genome editing to introduce endogenously expressed tags has the potential to address a number of the classical limitations of single molecule localisation microscopy. In this work we present the first systematic comparison of inserts introduced through CRISPR-knock in, with the aim of optimising this approach for single molecule imaging. We show that more highly monomeric and codon optimised variants of mEos result in improved expression at the TubA1B locus, despite the use of identical guides, homology templates, and selection strategies. We apply this approach to target the G protein-coupled receptor (GPCR) CXCR4 and show a further insert dependent effect on expression and protein function. Finally, we show that compared to over-expressed CXCR4, endogenously labelled samples allow for accurate single molecule quantification on ligand treatment. This suggests that despite the complications evident in CRISPR mediated labelling, the development of CRISPR-PALM has substantial quantitative benefits.