Published in

Oxford University Press, Genetics, 1(143), p. 259-275, 1996

DOI: 10.1093/genetics/143.1.259

Links

Tools

Export citation

Search in Google Scholar

Bioassaying putative RNA-binding motifs in a protein encoded by a gene that influences courtship and visually mediated behavior in Drosophila: in vitro mutagenesis of nonA.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The no-on-transient-A (nonA) gene of Drosophila melanogaster influences vision, courtship song, and viability. The nod-encoded polypeptide is inferred to bind single-stranded nucleic acids. Although sequence-analysis of NONA implies that it belongs to a special interspecific family of this protein type, it does contain two classical RNA recognition motifs (RRM). Their behavioral significance was assayed by generating transgenic strains that were singly or multiply mutated within the relatively N-terminal motif (RRM1) or within RRM2. Neither class of mutation affected NONA binding to polytene chromcsomes. The former mutations led to extremely low viability, accompanied by diminished adult longevities that were much worse than for a nod-null mutant, implying that faulty interpolypeptide interactions might accompany the effects of the amino-acid substitutions within RRM1. All in vitro-mutated types caused optomotor blindness and an absence of transient spikes in the electroretinogram. Courtship analysis discriminated between the effects of the mutations: the RRM2-mutated type generated song pulses and trains that tended to be mildly mutant. These phenotypic abnormalities reinforce the notion that nonA' s ubiquitous expression has its most important consequences in the optic lobes, the thoracic ganglia, or both, depending in part on the nonA allele.