Published in

MDPI, International Journal of Molecular Sciences, 18(20), p. 4383, 2019

DOI: 10.3390/ijms20184383

Links

Tools

Export citation

Search in Google Scholar

Ring Formation and Hydration Effects in Electron Attachment to Misonidazole

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions. While the NO 2 − dissociative electron attachment channel is suppressed, as also observed previously for other molecules, the OH − channel remains open. Such behavior is enabled by the high hydration energy of OH − and ring formation in the neutral radical co-fragment. These observations help to understand the mechanism of bio-reductive drug action. Electron-induced formation of covalent bonds is then important not only for biological processes but may find applications also in technology.