Published in

MDPI, Pharmaceutics, 10(11), p. 493, 2019

DOI: 10.3390/pharmaceutics11100493

Links

Tools

Export citation

Search in Google Scholar

Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Engineering and application of nanomaterials have recently helped advance various biomedical fields. Zinc oxide (ZnO)-based nanocomposites have become one of the most promising candidates for biomedical applications due to their biocompatibility, unique physicochemical properties, and cost-effective mass production. In addition, recent advances in nano-engineering technologies enable the generation of ZnO nanocomposites with unique three-dimensional structures and surface characteristics that are optimally designed for in vivo applications. Here, we review recent advances in the application of diverse ZnO nanocomposites, with an especial focus on their development as vaccine adjuvant and cancer immunotherapeutics, as well as their intrinsic properties interacting with the immune system and potential toxic effect in vivo. Finally, we summarize promising proof-of-concept applications as prophylactic and therapeutic vaccines against infections and cancers. Understanding the nano-bio interfaces between ZnO-based nanocomposites and the immune system, together with bio-effective design of the nanomaterial using nano-architectonic technology, may open new avenues in expanding the biomedical application of ZnO nanocomposites as a novel vaccine platform.