Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics D: Applied Physics, 47(52), p. 474002, 2019

DOI: 10.1088/1361-6463/ab3b65

Links

Tools

Export citation

Search in Google Scholar

Molecule counts in complex oligomers with single-molecule localization microscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Single-molecule localization microscopy resolves nano-scale protein clusters in cells, and in addition can extract protein copy numbers from within these clusters. A powerful approach for such molecular counting is the analysis of fluorophore blinking using stochastic model functions. Here, we develop a theoretical model for quantitative analysis of PALM data that accounts for the detection efficiency. By this, we are able to extract populations of different oligomers reliably and in complex mixtures. We demonstrate this approach analyzing simulated PALM data of a photoactivatable fluorescent protein. We generate simulations of blinking data of oligomers and of mixtures of oligomers, and show robust oligomer identification. In addition, we demonstrate this approach for experimental PALM data.