Published in

World Scientific Publishing, Journal of Bioinformatics and Computational Biology, 01(17), p. 1940001, 2019

DOI: 10.1142/s0219720019400018

Links

Tools

Export citation

Search in Google Scholar

Metatox - Web application for generation of metabolic pathways and toxicity estimation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Xenobiotics biotransformation in humans is a process of the chemical modifications, which may lead to the formation of toxic metabolites. The prediction of such metabolites is very important for drug development and ecotoxicology studies. We created the web-application MetaTox ( http://way2drug.com/mg ) for the generation of xenobiotics metabolic pathways in the human organism. For each generated metabolite, the estimations of the acute toxicity (based on GUSAR software prediction), organ-specific carcinogenicity and adverse effects (based on PASS software prediction) are performed. Generation of metabolites by MetaTox is based on the fragments datasets, which describe transformations of substrates structures to a metabolites structure. We added three new classes of biotransformation reactions: Dehydrogenation, Glutathionation, and Hydrolysis, and now metabolite generation for 15 most frequent classes of xenobiotic’s biotransformation reactions are available. MetaTox calculates the probability of formation of generated metabolite — it is the integrated assessment of the biotransformation reactions probabilities and their sites using the algorithm of PASS ( http://way2drug.com/passonline ). The prediction accuracy estimated by the leave-one-out cross-validation (LOO-CV) procedure calculated separately for the probabilities of biotransformation reactions and their sites is about 0.9 on the average for all reactions.