Published in

Oxford University Press, SLEEP, 2019

DOI: 10.1093/sleep/zsz140

Links

Tools

Export citation

Search in Google Scholar

The prospective association of objectively measured sleep and cerebral white matter microstructure in middle-aged and older persons

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractStudy ObjectivesPoor sleep may destabilize axonal integrity and deteriorate cerebral white matter. In middle-aged and older adults sleep problems increase alongside structural brain changes, but the temporal relation between these processes is poorly understood. We studied longitudinal associations between sleep and cerebral white matter microstructure.MethodsOne thousand one persons (59.3 ± 7.9 years, 55% women) were followed across 5.8 years (3.9–10.8). Total sleep time (TST, hours), sleep efficiency (SE, percentage), sleep onset latency (SOL, minutes), and wake after sleep onset (WASO, minutes) were measured at baseline using a wrist-worn actigraph. White matter microstructure (global and tract-specific fractional anisotropy [FA] and mean diffusivity [MD]) was measured twice with diffusion tensor imaging (DTI).ResultsPoor sleep was associated with worse white matter microstructure up to 7 years later but did not predict trajectories of DTI over time. Longer TST was associated with higher global FA (β = 0.06, 95% CI: 0.01 to 0.12), but not with MD. Persons with higher SE had higher global FA (β = 0.01, 95% CI: 0.002 to 0.01) and lower MD (β = −0.01, 95% CI: −0.01 to −0.0004). Consistently, those with more WASO had lower global FA (β = −0.003, 95% CI: −0.005 to −0.001) and higher MD (β = 0.002, 95% CI: 0.0004 to 0.004). Global findings seemed to be driven by microstructural alterations in the cingulum, anterior forceps of corpus callosum, projection and association tracts.ConclusionsMiddle-aged and older persons with more WASO, lower SE and shorter TST have worse microstructure of cerebral white matter. Microstructural alterations are most pronounced projection and association tracts, in the cingulum, and in the anterior forceps of corpus callosum.