Published in

The Company of Biologists, Journal of Cell Science, 14(132), 2019

DOI: 10.1242/jcs.229849

Links

Tools

Export citation

Search in Google Scholar

Retinoblastoma protein represses E2F3 to maintain Sertoli cell quiescence in mouse testis

Journal article published in 2019 by Emmi Rotgers, Sheyla Cisneros-Montalvo ORCID, Mirja Nurmio, Jorma Toppari ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTMaintenance of the differentiated state and cell cycle exit in adult Sertoli cells depends on tumor suppressor retinoblastoma protein (RB, also known as RB1). We have previously shown that RB interacts with transcription factor E2F3 in the mouse testis. Here, we investigated how E2f3 contributes to adult Sertoli cell proliferation in a mouse model of Sertoli cell-specific knockout of Rb by crossing these mice with an E2f3 knockout mouse line. In the presence of intact RB, E2f3 was redundant in Sertoli cells. However, in the absence of RB, E2f3 is a key driver for cell cycle re-entry and loss of function in adult Sertoli cells. Knockout of E2f3 in Sertoli cells rescued the breakdown of Sertoli cell function associated with Rb loss, prevented proliferation of adult Sertoli cells and restored fertility of the mice. In summary, our results show that RB-mediated repression of E2F3 is critical for the maintenance of cell cycle exit and terminal differentiation in adult mouse Sertoli cells.