Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(488), p. 120-134, 2019

DOI: 10.1093/mnras/stz1707

Links

Tools

Export citation

Search in Google Scholar

Possible evolution of the circum-galactic medium around QSOs with QSO age and cosmic time revealed by Ly α haloes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We first present new Subaru narrow-band observations of the Ly α halo around the quasi-stellar object (QSO) CFHQ J232908−030158 at z = 6.42, which appears the most luminous and extended halo at z > 5 (LLy α = 9.8 × 1043 erg s−1 within 37 pkpc diameter). Then, combining these measurements with available data in the literature, we find two different evolutions of QSOs’ Ly α haloes. First is a possible short-term evolution with QSO age seen in four z > 6 QSOs. We find the anticorrelation between the Ly α halo scales with QSOs’ infrared (IR) luminosity, with J2329−0301’s halo being the brightest and largest. It indicates that ionizing photons escape more easily out to circum-galactic regions when host galaxies are less dusty. We also find a positive correlation between IR luminosity and black hole mass (MBH). Given MBH as an indicator of QSO age, we propose a hypothesis that a large Ly α halo mainly exists around QSOs in the young phase of their activity due to a small amount of dust. The second is an evolution with cosmic time seen over z ∼ 2–5. We find the increase of surface brightness towards lower redshift with a similar growth rate to that of dark matter haloes (DHs) that evolve to MDH = 1012–1013 M⊙ at z = 2. The extent of Ly α haloes is also found to increase at a rate scaling with the virial radius of growing DHs, $r_\text{vir} ∝ M_\text{DH}^{1/3}(1+z)^{-1}$. These increases are consistent with a scenario that the circum-galactic medium around QSOs evolves in mass and size keeping pace with hosting DHs.