Published in

The Company of Biologists, Development, 2019

DOI: 10.1242/dev.164145

Links

Tools

Export citation

Search in Google Scholar

Destruction complex dynamics: Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The central regulator of the Wnt/β-catenin pathway is the Axin/APC/GSK3β destruction complex (DC), which in unstimulated conditions targets cytoplasmic β-catenin for degradation. How Wnt activation inhibits the DC to permit β-catenin-dependent signaling remains controversial, in part because the DC and its regulation have never been observed in vivo. Using Bimolecular Fluorescence Complementation (BiFC) methods, we have now analyzed the activity of the DC under near-physiological conditions in Drosophila. By focusing on well-established patterns of Wnt/Wg signaling in the developing Drosophila wing, we have defined the sequence of events by which activated Wnt receptors induce a conformational change within the DC, resulting in modified Axin-GSK3β interactions that prevent β-catenin degradation. Surprisingly, the nucleus is surrounded by active DCs, which principally control β-catenin's degradation and thereby nuclear access. These DCs are inactivated and removed upon Wnt signal transduction. These results suggest a novel mechanistic model for dynamic Wnt signaling transduction in vivo.