Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 1(316), p. R13-R20, 2019

DOI: 10.1152/ajpregu.00028.2018

Links

Tools

Export citation

Search in Google Scholar

Temperature of water ingested before exercise alters the onset of physiological heat loss responses

Journal article published in 2019 by Nathan B. Morris ORCID, Georgia K. Chaseling ORCID, Anthony R. Bain, Ollie Jay ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study sought to determine whether the temperature of water ingested before exercise alters the onset threshold and subsequent thermosensitivity of local vasomotor and sudomotor responses after exercise begins. Twenty men [24 (SD 4) yr of age, 75.8 (SD 8.1) kg body mass, 52.3 (SD 7.7) ml·min−1·kg−1peak O2consumption (V̇o2peak)] ingested 1.5°C, 37°C, or 50°C water (3.2 ml/kg), rested for 5 min, and then cycled at 50% V̇o2peakfor 15 min at 23.0 (SD 0.9) °C and 32 (SD 10) % relative humidity. Mean body temperature (Tb), local sweat rate (LSR), and skin blood flow (SBF) were measured. In a subset of eight men [25 (SD 5) yr of age, 78.6 (SD 8.3) kg body mass, 48.9 (SD 11.1) ml·min−1·kg−1V̇o2peak], blood pressure was measured and cutaneous vascular conductance (CVC) was determined. The change in Tbwas greater at the onset of LSR measurement with ingestion of 1.5°C than 50°C water [ΔTb= 0.19 (SD 0.15) vs. 0.11 (SD 0.12) °C, P = 0.04], but not 37°C water [ΔTb= 0.14 (SD 0.14) °C, P = 0.23], but did not differ between trials for SBF measurement [ΔTb= 0.18 (SD 0.15) °C, 0.11 (SD 0.13) °C, and 0.09 (SD 0.09) °C with 1.5°C, 37°C, and 50°C water, respectively, P = 0.07]. Conversely, the thermosensitivity of LSR and SBF was not different [LSR = 1.11 (SD 0.75), 1.11 (SD 0.75), and 1.34 (SD 1.11) mg·min−1·cm−2·°C−1with 1.5°C, 37°C, and 50°C ingested water, respectively ( P = 0.46); SBF = 717 (SD 882), 517 (SD 606), and 857 (SD 904) %baseline arbitrary units (AU)/°C with 1.5°C, 37°C, and 50°C ingested water, respectively ( P = 0.95)]. After 15 min of exercise, LSR and SBF were greater with ingestion of 50°C than 1.5°C water [LSR = 0.40 (SD 0.17) vs. 0.31 (SD 0.19) mg·min−1·cm−2( P = 0.02); SBF = 407 (SD 149) vs. 279 (SD 117) %baseline AU ( P < 0.001)], but not 37°C water [LSR = 0.50 (SD 0.22) mg·min−1·cm−2; SBF = 324 (SD 169) %baseline AU]. CVC was statistically unaffected [275 (SD 81), 340 (SD 114), and 384 (SD 160) %baseline CVC with 1.5°C, 37°C, and 50°C ingested water, respectively, P = 0.30]. Collectively, these results support the concept that visceral thermoreceptors modify the central drive for thermoeffector responses.