Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 18(11), p. 2148, 2019

DOI: 10.3390/rs11182148

Links

Tools

Export citation

Search in Google Scholar

Estimating Peanut Leaf Chlorophyll Content with Dorsiventral Leaf Adjusted Indices: Minimizing the Impact of Spectral Differences between Adaxial and Abaxial Leaf Surfaces

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Relatively little research has assessed the impact of spectral differences among dorsiventral leaves caused by leaf structure on leaf chlorophyll content (LCC) retrieval. Based on reflectance measured from peanut adaxial and abaxial leaves and LCC measurements, this study proposed a dorsiventral leaf adjusted ratio index (DLARI) to adjust dorsiventral leaf structure and improve LCC retrieval accuracy. Moreover, the modified Datt (MDATT) index, which was insensitive to leaves structure, was optimized for peanut plants. All possible wavelength combinations for the DLARI and MDATT formulae were evaluated. When reflectance from both sides were considered, the optimal combination for the MDATT formula was ( R 723 − R 738 ) / ( R 723 − R 722 ) with a cross-validation R2cv of 0.91 and RMSEcv of 3.53 μg/cm2. The DLARI formula provided the best performing indices, which were ( R 735 − R 753 ) / ( R 715 − R 819 ) for estimating LCC from the adaxial surface (R2cv = 0.96, RMSEcv = 2.37 μg/cm2) and ( R 732 − R 754 ) / ( R 724 − R 773 ) for estimating LCC from reflectance of both sides (R2cv = 0.94, RMSEcv = 2.81 μg/cm2). A comparison with published vegetation indices demonstrated that the published indices yielded reliable estimates of LCC from the adaxial surface but performed worse than DLARIs when both leaf sides were considered. This paper concludes that the DLARI is the most promising approach to estimate peanut LCC.