Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-49107-y

Links

Tools

Export citation

Search in Google Scholar

Triboelectrification of Two-Dimensional Chemical Vapor Deposited WS2 at Nanoscale

Journal article published in 2019 by He Wang ORCID, Chung-Che Huang, Tomas Polcar ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTriboelectric properties of chemical vapor deposited WS2 nanoflakes have been characterized in nano-range by atomic force microscopy (AFM) and Kelvin force microscopy (KFM). The triboelectric process is dependent on the thickness of WS2 nanoflakes, and it is sensitive to the adsorbates like water molecules, as well as transferred Pt from the tip on the sample. The density of tribo-charge can be modified by applying various biases to the conductive Pt-coated tip during the frictional process. Tunneling of the tribo-charge into the gap between WS2 and the underlying substrate results in a long lifetime, which is about 100 times longer than conventional triboelectric charges. Moreover, we observe a positive correlation between the layer number and resistance to charge dissipation. Our finding can become the driving force for a new category of two-dimensional (2D) WS2 triboelectrically controllable nanodevices.