Published in

The Company of Biologists, Development, 2019

DOI: 10.1242/dev.177618

Links

Tools

Export citation

Search in Google Scholar

Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in 22q11 deletion syndrome patients and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9 deficient mice are born with complex cardiovascular malformations affecting the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared to Tbx1 heterozygous mice. Using a novel Pax9Cre allele we demonstrated that the site of this Tbx1-Pax9 genetic interaction is in the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for critical tissue interactions during normal morphogenesis of the pharyngeal arch artery system.