Published in

De Gruyter, International Journal of Chemical Reactor Engineering, 9(17), 2019

DOI: 10.1515/ijcre-2018-0149

Links

Tools

Export citation

Search in Google Scholar

Preparation of Pyrrhotite from Ammonium Jarosite and Estimation of Activation Energy in Reducing Atmosphere

Journal article published in 2019 by Xiaoling Ma, Hongbin Tan, Faqin Dong, Bowen Li, Jinfeng Liu, Yuanxiang Chen, Lu Wang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Ammonium jarosite sediment is a by-product of hydrometallurgical process used to extract zinc metal, which, which contains heavy metal ions and raises severe environmental concerns The transformation of jarosite sediment into high-value-added sulfide products through simple processing is a cost-effective and efficient strategy to overcome environmental and waste management issues. Herein, the influence of sulfur on thermal decomposition of ammonium jarosite is investigated in reducing atmosphere. The results reveal that the presence of sulfur promoted the decomposition of ammonium jarosite and szomolnokite and iron oxide phases have been observed after being heat treated at 300 °C. Moreover, after heat treatment at 700 °C, the decomposition of jarosite/sulfur mixture resulted in the formation of pyrrhotite phase, which can be used as a raw material for sulfuric acid production. Lastly, the activation energy of pyrrhotite formation has been estimated by using KAS equation and found to be 216.2 kJ/mol in reducing atmosphere.