Published in

IOP Publishing, Journal of Physics D: Applied Physics, 46(52), p. 465102, 2019

DOI: 10.1088/1361-6463/ab37cf

Links

Tools

Export citation

Search in Google Scholar

Optical properties of metamorphic type-I InAs1−x Sb x /Al y In1−y As quantum wells grown on GaAs for the mid-infrared spectral range

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We analyse the optical properties of InAs1−x Sb x /Al y In1−y As quantum wells (QWs) grown by molecular beam epitaxy on relaxed Al y In1−y As metamorphic buffer layers (MBLs) using GaAs substrates. The use of Al y In1−y As MBLs allows for the growth of QWs having large type-I band offsets, and emission wavelengths >3 m. Photoluminescence (PL) measurements for QWs having Sb compositions up to x = 10% demonstrate strong room temperature PL up to 3.4 m, as well as enhancement of the PL intensity with increasing wavelength. To quantify the trends in the measured PL we calculate the QW spontaneous emission (SE), using a theoretical model based on an eight-band Hamiltonian. The theoretical calculations, which are in good agreement with experiment, identify that the observed enhancement in PL intensity with increasing wavelength is associated with the impact of compressive strain on the QW valence band structure, which reduces the band edge density of states making more carriers available to undergo radiative recombination at fixed carrier density. Our results highlight the potential of type-I InAs1−x Sb x /Al y In1−y As metamorphic QWs to address several limitations associated with existing heterostructures operating in the mid-infrared, establishing these novel heterostructures as a suitable platform for the development of light-emitting diodes and diode lasers.