Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cancers, 8(11), p. 1043, 2019

DOI: 10.3390/cancers11081043

Links

Tools

Export citation

Search in Google Scholar

Synergic Interactions Between Hepatic Stellate Cells and Uveal Melanoma in Metastatic Growth

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Uveal melanoma (UM) is a malignant intraocular tumor that spreads to the liver in half of the cases. Since hepatic cells could play a role in the therapeutic resistance of metastatic UM, the purpose of our study was to investigate the pro-invasive role of hepatic stellate cells (HSteCs) in metastatic UM at the micro- and macro-metastatic stages. We first performed an immunostaining with the alpha-smooth muscle actin (αSMA) to localize activated HSteCs in UM liver macro-metastases from four patients. Their accumulation of collagen was assessed with Masson’s Trichrome stain. Next, we inoculated metastatic UM cells alone or with human HSteCs in triple-immunodeficient mice, in order to determine if HSteCs are recruited as early as the micro-metastatic stage. The growth of metastatic foci was imaged in the liver by ex vivo fluorescence imaging. Histological analyses were performed with Masson’s Trichrome and Picrosirius Red stains, and antibodies against Melan-A and αSMA. The collagen content was measured in xenografts by quantitative polarization microscopy. In patient hepatectomy samples, activated HSteCs and their pathological matrix were localized surrounding the malignant lesions. In the mouse xenograft model, the number of hepatic metastases was increased when human HSteCs were co-inoculated. Histological analyses revealed a significant recruitment of HSteCs near the micro/macrolesions, and an increase in fibrillar collagen production. Our results show that HSteCs can provide a permissive microenvironment and might increase the therapeutic resistance of metastatic UM.