Published in

Nature Research, Communications Biology, 1(2), 2019

DOI: 10.1038/s42003-019-0504-5

Links

Tools

Export citation

Search in Google Scholar

High-Throughput Yeast Aging Analysis for Cryptococcus (HYAAC) microfluidic device streamlines aging studies in Cryptococcus neoformans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCryptococcus neoformans (Cn) is a deadly fungal pathogen responsible for ~ 180,000 deaths per year and despite effective antifungals, treatment failure and resistance to antifungals are increasingly problematic. Aging and age-related phenotypes are prominent virulence traits that contribute to the resilience of Cn to host responses and antifungals. Traditional methods to study aging in Cn are expensive, inefficient and in need of improvement. Here, we demonstrate the development and use of a High-Throughput Yeast Aging Analysis for Cryptococcus (HYAAC) microfluidic device to better study aging and age-associated genes in Cn. Compared to traditional methods, the HYAAC is superior in its efficiency to isolate, manipulate and observe old cells for analysis. It allows for the trapping and tracking of individual cells over the course of their lifespan, allowing for more precise measurements of lifespan, tracking of age-related phenotypes with age, and a more high-throughput ability to investigate genes associated with aging.