Full text: Unavailable
Abstract Autoimmune diseases are devastating conditions in which the immune system is directed against the host, leading to life-threatening destruction of organs. Although autoantigens are ill-defined in most autoimmune diseases, this is not the case in the skin. Autoimmune bullous diseases have been extensively studied with detailed characterization of autoantigens, the epitopes that are targeted, and the mechanisms of action that mediate autoimmune tissue destruction. Pemphigus is an autoimmune bullous disease caused by circulating IgG that targets two desmosomal proteins, desmoglein 1 and 3, which are crucial for cell–cell adhesion of keratinocytes. Binding of auto-antibodies to desmogleins impairs keratinocyte adhesion, leading to severe blistering disease. Mouse models that recapitulate the human disease have been instrumental in elucidating the detailed pathophysiology. Taking advantage of the fact that desmogleins are specifically targeted in pemphigus, studying humoral and cellular autoimmunity against these autoantigens provides us with an opportunity to understand not only the effector mechanisms of B and T cells in mediating pathology but also how autoreactive lymphocytes are regulated during development in the thymus and post-development in the periphery. This review introduces pemphigus and its subtypes as prototypic autoimmune diseases from which recent basic and translational developments should provide insight into how autoimmunity develops.