Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 18(9), p. 3894, 2019

DOI: 10.3390/app9183894

Links

Tools

Export citation

Search in Google Scholar

Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine

Journal article published in 2019 by Linsheng Huang, Zhaochuan Wu, Wenjiang Huang ORCID, Huiqin Ma ORCID, Jinling Zhao ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Fusarium head blight (FHB) is one of the diseases caused by fungal infection of winter wheat (Triticum aestivum), which is an important cause of wheat yield loss. It produces the deoxynivalenol (DON) toxin, which is harmful to human and animal health. In this paper, a total of 89 samples were collected from FHB endemic areas. The occurrence of FHB is completely natural in experimental fields. Non-imaging hyperspectral data were first processed by spectral standardization. Spectral features of the first-order derivatives, the spectral absorption features of the continuum removal, and vegetation indices were used to evaluate the ability to identify FHB. Then, the spectral feature sets, which were sensitive to FHB and have significant differences between classes, were extracted from the front, side, and erect angles of winter wheat ear, respectively. Finally, Fisher’s linear discriminant analysis (FLDA) for dimensionality reduction and a support vector machine (SVM) based on radical basis function (RBF) were used to construct an effective identification model for disease severity at front, side, and erect angles. Among selected features, the first-order derivative features of SDg/SDb and (SDg-SDb)/(SDg+SDb) were most dominant in the model produced for the three angles. The results show that: (1) the selected spectral features have great potential in detecting ears infected with FHB; (2) the accuracy of the FLDA model for the side, front, and erect angles was 77.1%, 85.7%, and 62.9%. The overall accuracy of the SVM (80.0%, 82.9%, 65.7%) was slightly better than FLDA, but the effect was not obvious; (3) LDA combined with SVM can effectively improve the overall accuracy, user’s accuracy, and producer’s accuracy of the model for the three angles. The over accuracy of the side (88.6%) was better than the front (85.7%), while the over accuracy of the erect angle was the lowest (68.6%).