Published in

MDPI, Materials, 19(12), p. 3099, 2019

DOI: 10.3390/ma12193099

Links

Tools

Export citation

Search in Google Scholar

Electrically Insulating Plasma Polymer/ZnO Composite Films

Journal article published in 2019 by Ahmed Al-Jumaili ORCID, Avishek Kumar, Kateryna Bazaka ORCID, Mohan V. Jacob ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this report, the electrical properties of plasma polymer films functionalized with ZnO nanoparticles were investigated with respect to their potential applications in biomaterials and microelectronics fields. The nanocomposite films were produced using a single-step method that combines simultaneous plasma polymerization of renewable geranium essential oil with thermal decomposition of zinc acetylacetonate Zn(acac)2. The input power used for the deposition of composites were 10 W and 50 W, and the resulting composite structures were abbreviated as Zn/Ge 10 W and Zn/Ge 50 W, respectively. The electrical properties of pristine polymers and Zn/polymer composite films were studied in metal–insulator–metal structures. At a quantity of ZnO of around ~1%, it was found that ZnO had a small influence on the capacitance and dielectric constants of thus-fabricated films. The dielectric constant of films with smaller-sized nanoparticles exhibited the highest value, whereas, with the increase in ZnO particle size, the dielectric constant decreases. The conductivity of the composites was calculated to be in the in the range of 10−14–10−15 Ω−1 m−1, significantly greater than that for the pristine polymer, the latter estimated to be in the range of 10−16–10−17 Ω−1 m−1.