Published in

Oxford University Press, Nucleic Acids Research, W1(47), p. W451-W455, 2019

DOI: 10.1093/nar/gkz288

Links

Tools

Export citation

Search in Google Scholar

GalaxyRefine2: simultaneous refinement of inaccurate local regions and overall protein structure

Journal article published in 2019 by Gyu Rie Lee ORCID, Jonghun Won, Lim Heo, Chaok Seok ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The 3D structure of a protein can be predicted from its amino acid sequence with high accuracy for a large fraction of cases because of the availability of large quantities of experimental data and the advance of computational algorithms. Recently, deep learning methods exploiting the coevolution information obtained by comparing related protein sequences have been successfully used to generate highly accurate model structures even in the absence of template structure information. However, structures predicted based on either template structures or related sequences require further improvement in regions for which information is missing. Refining a predicted protein structure with insufficient information on certain regions is critical because these regions may be connected to functional specificity that is not conserved among related proteins. The GalaxyRefine2 web server, freely available via http://galaxy.seoklab.org/refine2, is an upgraded version of the GalaxyRefine protein structure refinement server and reflects recent developments successfully tested through CASP blind prediction experiments. This method adopts an iterative optimization approach involving various structure move sets to refine both local and global structures. The estimation of local error and hybridization of available homolog structures are also employed for effective conformation search.