Published in

Springer, Lecture Notes in Computer Science, p. 435-443, 2010

DOI: 10.1007/978-3-642-15705-9_53

Links

Tools

Export citation

Search in Google Scholar

Whole Heart Segmentation of Cardiac MRI Using Multiple Path Propagation Strategy

Journal article published in 2010 by X. Zhuang ORCID, K. Leung, K. Rhode, R. Razavi, D. Hawkes, S. Ourselin
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Automatic segmentation of cardiac MRI is an important but challenging task in clinical study of cardiac morphology. Recently, fusing segmentations from multiple classifiers has been shown to achieve more accurate results than a single classifier. In this work, we propose a new strategy, MUltiple Path Propagation and Segmentation (MUPPS), in contrast with the currently widely used multi-atlas propagation and segmentation (MAPS) scheme. We showed that MUPPS outperformed the standard MAPS in the experiment using twenty-one in vivo cardiac MR images. Furthermore, we studied and compared different path selection strategies for the MUPPS, to pursue an efficient implementation of the segmentation framework. We showed that the path ranking scheme using the image similarity after an affine registration converged faster and only needed eleven classifiers from the atlas repository. The fusion of eleven propagation results using the proposed path ranking scheme achieved a mean Dice score of 0.911 in the whole heart segmentation and the highest gain of accuracy was obtained from myocardium segmentation.