Published in

MDPI, Nanomaterials, 5(9), p. 712, 2019

DOI: 10.3390/nano9050712

Links

Tools

Export citation

Search in Google Scholar

Dissolved Organic Matter Modulates Algal Oxidative Stress and Membrane System Responses to Binary Mixtures of Nano-Metal-Oxides (nCeO2, nMgO and nFe3O4) and Sulfadiazine

Journal article published in 2019 by Fan Zhang ORCID, Nan Ye, Se Wang ORCID, Yue Meng, Hao Fang, Zhuang Wang ORCID, De-Gao Wang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Joint biomarker responses, oxidative stress and membrane systems, were determined for nano-metal-oxides (nMeO, i.e., nCeO2, nMgO, and nFe3O4) and sulfadiazine (SDZ) exposed at relevant low concentrations to two freshwater microalgae Scenedesmus obliquus and Chlorella pyrenoidosa. The impacts of dissolved organic matter (DOM) on the joint biomarker responses were also investigated. Results indicated that the presence of SDZ significantly decreased the level of intercellular reactive oxygen species (ROS) in the algal cells exposed to each nMeO. Reduction of cell membrane permeability (CMP) and mitochondrial membrane potential (MMP) in the algal cells was observed when the algae were exposed to the mixture of SDZ and the nMeO. The degree of reduction of the ROS level, CMP, and MMP significantly went down with the addition of DOM to a certain extent. Changes in cellular oxidative stress and membrane function depended on the types of both nMeO and algal species. This contribution provides an insight into the hazard assessment of a mixture consisting of emerging contaminants and DOM, as they can coexist in the aquatic environment.