Published in

MDPI, Remote Sensing, 13(11), p. 1588, 2019

DOI: 10.3390/rs11131588

Links

Tools

Export citation

Search in Google Scholar

Satellite Image Super-Resolution via Multi-Scale Residual Deep Neural Network

Journal article published in 2019 by Tao Lu ORCID, Jiaming Wang, Yanduo Zhang, Zhongyuan Wang, Junjun Jiang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recently, the application of satellite remote sensing images is becoming increasingly popular, but the observed images from satellite sensors are frequently in low-resolution (LR). Thus, they cannot fully meet the requirements of object identification and analysis. To utilize the multi-scale characteristics of objects fully in remote sensing images, this paper presents a multi-scale residual neural network (MRNN). MRNN adopts the multi-scale nature of satellite images to reconstruct high-frequency information accurately for super-resolution (SR) satellite imagery. Different sizes of patches from LR satellite images are initially extracted to fit different scale of objects. Large-, middle-, and small-scale deep residual neural networks are designed to simulate differently sized receptive fields for acquiring relative global, contextual, and local information for prior representation. Then, a fusion network is used to refine different scales of information. MRNN fuses the complementary high-frequency information from differently scaled networks to reconstruct the desired high-resolution satellite object image, which is in line with human visual experience (“look in multi-scale to see better”). Experimental results on the SpaceNet satellite image and NWPU-RESISC45 databases show that the proposed approach outperformed several state-of-the-art SR algorithms in terms of objective and subjective image qualities.