Full text: Download
A reservoir of infected cells in which the HIV genome is transcriptionally silent is acknowledged to be the principal barrier to eradicating the virus from an infected person. A number of cellular processes are implicated in this silencing; however, the viral factors that may contribute remain underexplored. Here we examined mutations altering the correct splicing of HIV gene products as a model to study whether differences in viral sequence can affect either the proportion of viruses that are active or silent or their ability to reactivate. We found that some naturally occurring variations result in viruses that are silenced at a higher rate and require a proportionally increased stimulus for reactivation from latency. These data suggest that the silencing and reactivation behavior of HIV exists in a spectrum, influenced by factors intrinsic to the virus.