Published in

The Company of Biologists, Journal of Experimental Biology, 2019

DOI: 10.1242/jeb.199398

Links

Tools

Export citation

Search in Google Scholar

Phenotypic plasticity in the invasive pest Drosophila suzukii: activity rhythms and gene expression in response to temperature

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Phenotypic plasticity may contribute to the invasive success of an alien species in a new environment. A higher plastic species may survive and reproduce in more diverse environments, thereby supporting establishment and colonization. We focused on plasticity in the circadian rhythm of activity, which can favour species coexistence in invasion, for the invasive species Drosophila suzukii, which is expected to be a weaker direct competitor than other Drosophila species of the resident community. We compared between the invasive D. suzukii and the resident D. melanogaster the circadian rhythms of the locomotor activity in adults and the expression of clock genes in response to temperature. We showed that D. suzukii is active in a narrower range of temperatures than D. melanogaster and that the activities of both species overlap during the day, regardless of the temperature. Both species are diurnal and exhibit rhythmic activity at dawn and dusk, with a much lower activity at dawn for D. suzukii females. Our results showed that the timeless and clock genes are good candidates to explain the plastic response that is observed in relation to temperature. Overall, our results suggest that thermal phenotypic plasticity in D. suzukii activity is not sufficient to explain the invasive success of D. suzukii and calls for testing other hypotheses, such as the release of competitors and/or predators.