Published in

MDPI, Nutrients, 6(11), p. 1326, 2019

DOI: 10.3390/nu11061326

Links

Tools

Export citation

Search in Google Scholar

Postprandial Circulating miRNAs in Response to a Dietary Fat Challenge

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Postprandial lipemia has many physiopathological effects, some of which increase the risk of cardiovascular disease. MicroRNAs (miRNAs) can be found in almost all biological fluids, but their postprandial kinetics are poorly described. We aimed to profile circulating miRNAs in response to a fat challenge. In total, 641 circulating miRNAs were assessed by real-time PCR in plasmas from mice two hours after lipid gavage. Mice with intestine-specific loss of Dicer were screened to identify potential miRNAs released by the intestine. A total of 68 miRNAs were selected for further validation. Ten circulating miRNAs were finally validated as responsive to postprandial lipemia, including miR-206-3p, miR-543-3p, miR-466c-5p, miR-27b-5p, miR-409-3p, miR-340-3p, miR-1941-3p, miR-10a-3p, miR-125a-3p, and miR-468-3p. Analysis of their possible tissues of origin/target showed an enrichment of selected miRNAs in liver, intestine, brain, or skeletal muscle. miR-206, miR-27b-5p, and miR-409-3p were validated in healthy humans. Analysis of their predicted target genes revealed their potential involvement in insulin/insulin like growth factor (insulin/IGF), angiogenesis, cholecystokinin B receptor signaling pathway (CCKR), inflammation or Wnt pathways for mice, and in platelet derived growth factor (PDGF) and CCKR signaling pathways for humans. Therefore, the current study shows that certain miRNAs are released in the circulation in response to fatty meals, proposing them as potential novel therapeutic targets of lipid metabolism.