Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 10(11), p. 1209, 2019

DOI: 10.3390/rs11101209

Links

Tools

Export citation

Search in Google Scholar

Optimal Strategy of a GPS Position Time Series Analysis for Post-Glacial Rebound Investigation in Europe

Journal article published in 2019 by Janusz Bogusz ORCID, Anna Klos ORCID, Krzysztof Pokonieczny ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We describe a comprehensive analysis of the 469 European Global Positioning System (GPS) vertical position time series. The assumptions we present should be employed to perform the post-glacial rebound (PGR)-oriented comparison. We prove that the proper treatment of either deterministic or stochastic components of the time series is indispensable to obtain reliable vertical velocities along with their uncertainties. The statistical significance of the vertical velocities is examined; due to their small vertical rates, 172 velocities from central and western Europe are found to fall below their uncertainties and excluded from analyses. The GPS vertical velocities reach the maximum values for Scandinavia with the maximal uplift equal to 11.0 mm/yr. Moreover, a comparison between the GPS-derived rates and the present-day motion predicted by the newest Glacial Isostatic Adjustment (GIA) ICE-6G_C (VM5a) model is provided. We prove that these rates agree at a 0.5 mm/yr level on average; the Sweden area with the most significant uplift observed agrees within 0.2 mm/yr. The largest discrepancies between GIA-predicted uplift and the GPS vertical rates are found for Svalbard; the difference is equal to 6.7 mm/yr and arises mainly from the present-day ice melting. The GPS-derived vertical rates estimated for the southern coast of the Baltic Sea are systematically underestimated by the GIA prediction by up to 2 mm/yr. The northern British Isles vertical rates are overestimated by the GIA model by about 0.5 mm/yr. The area of the Netherlands and the coastal area of Belgium are both subsiding faster than it is predicted by the GIA model of around 1 mm/yr. The inland part of Belgium, Luxemburg and the western part of Germany show strong positive velocities when compared to the GIA model. Most of these stations uplift of more than 1 mm/yr. It may be caused by present-day elastic deformation due to terrestrial hydrology, especially for Rhein basin, or non-tidal atmospheric loading, for Belgium and Luxembourg.