Published in

Oxford University Press (OUP), Brain, 8(142), p. 2367-2379, 2019

DOI: 10.1093/brain/awz149

Links

Tools

Export citation

Search in Google Scholar

Stratifying drug treatment of cognitive impairments after traumatic brain injury using neuroimaging

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Cognitive impairment is common following traumatic brain injury. Dopaminergic drugs can enhance cognition after traumatic brain injury, but individual responses are highly variable. This may be due to variability in dopaminergic damage between patients. We investigate whether measuring dopamine transporter levels using 123I-ioflupane single-photon emission computed tomography (SPECT) predicts response to methylphenidate, a stimulant with dopaminergic effects. Forty patients with moderate-severe traumatic brain injury and cognitive impairments completed a randomized, double-blind, placebo-controlled, crossover study. 123I-ioflupane SPECT, MRI and neuropsychological testing were performed. Patients received 0.3 mg/kg of methylphenidate or placebo twice a day in 2-week blocks. Subjects received neuropsychological assessment after each block and completed daily home cognitive testing during the trial. The primary outcome measure was change in choice reaction time produced by methylphenidate and its relationship to stratification of patients into groups with normal and low dopamine transporter binding in the caudate. Overall, traumatic brain injury patients showed slow information processing speed. Patients with low caudate dopamine transporter binding showed improvement in response times with methylphenidate compared to placebo [median change = −16 ms; 95% confidence interval (CI): −28 to −3 ms; P = 0.02]. This represents a 27% improvement in the slowing produced by traumatic brain injury. Patients with normal dopamine transporter binding did not improve. Daily home-based choice reaction time results supported this: the low dopamine transporter group improved (median change −19 ms; 95% CI: −23 to −7 ms; P = 0.002) with no change in the normal dopamine transporter group (P = 0.50). The low dopamine transporter group also improved on self-reported and caregiver apathy assessments (P = 0.03 and P = 0.02, respectively). Both groups reported improvements in fatigue (P = 0.03 and P = 0.007). The cognitive effects of methylphenidate after traumatic brain injury were only seen in patients with low caudate dopamine transporter levels. This shows that identifying patients with a hypodopaminergic state after traumatic brain injury can help stratify the choice of cognitive enhancing therapy.