Nature Research, Scientific Reports, 1(9), 2019
DOI: 10.1038/s41598-019-49257-z
Full text: Download
AbstractPhysical synchrony has been suggested to have positive effects on not only concurrent but also subsequent communication, but the underlying neural processes are unclear. Using functional near-infrared spectroscopy (fNIRS) hyperscanning, we tested the effects of preceding physical synchrony on subsequent dyadic teaching-learning communication. Thirty-two pairs of participants performed two experimental sessions. In each session, they underwent a rhythmic arm movement block with synchronous or asynchronous conditions, and then taught/learned unknown words to/from each other according to a given scenario. Neural activities in their medial and left lateral prefrontal cortex (PFC) were measured and inter-brain synchronization (IBS) during the teaching-learning blocks was evaluated. Participants rated their subjective rapport during the teaching-learning blocks, and took a word memory test. The analyses revealed that (1) prior physical synchrony enhanced teacher-learner rapport; (2) prior physical synchrony also enhanced IBS in the lateral PFC; and (3) IBS changes correlated positively with rapport changes. Physical synchrony did however not affect word memory performance. These results suggest that IBS can be useful to measure the effects of social-bonding facilitation activities for educational communication.