Published in

Pensoft Publishers, ZooKeys, (872), p. 57-68, 2019

DOI: 10.3897/zookeys.872.34278

Links

Tools

Export citation

Search in Google Scholar

When barcoding fails: development of diagnostic nuclear markers for the sibling caddisfly species Sericostoma personatum (Spence in Kirby & Spence, 1826) and Sericostoma flavicorne Schneider, 1845

Journal article published in 2019 by Sonja Darschnik, Florian Leese ORCID, Martina Weiss, Hannah Weigand
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The larval stages of the central European sibling caddisfly species Sericostoma personatum (Spence in Kirby and Spence, 1826) and S. flavicorne Schneider, 1845 are morphologically similar and can only be distinguished by differences in coloration in late larval instars. Identification using the mitochondrial barcoding gene, i.e., the Cytochrome c Oxidase 1, is impossible, as both species share the same highly differentiated haplotypes due to introgression. Nuclear gene markers obtained through double digest restriction site associate sequencing (ddRAD seq), however, can reliably distinguish both species, yet the method is expensive as well as time-consuming and therefore not practicable for species determination. To facilitate accurate species identification without sequencing genome-wide markers, we developed nine diagnostic nuclear RFLP markers based on ddRAD seq data. The markers were successfully tested on geographically distinct populations of the two Sericostoma species in western Germany, on known hybrids, and on another sericostomatid caddisfly species, Oecismus monedula (Hagen, 1859) that sometimes shares the habitat and can be morphologically confounded with Sericostoma. We describe a simple and fast protocol for reliable species identification of S. personatum and S. flavicorne independent of the life cycle stage of the specimens.