Published in

SAGE Publications, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 19-20(233), p. 6910-6927, 2019

DOI: 10.1177/0954406219867985

Links

Tools

Export citation

Search in Google Scholar

Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects

Journal article published in 2019 by M.-D. Jashim Uddin ORCID, Muhammad N. Kabir ORCID, Yasser Alginahi, O. Anwar Bég
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, a new bio-nano-transport model is presented. The effects of first- and second-order velocity slips, thermal slip, mass slip, and gyro-tactic (torque-responsive) microorganism slip of bioconvective nanofluid flow from a moving plate under blowing phenomenon are numerically examined. The flow model is expressed by partial differential equations which are converted to a similar boundary value problem by similarity transformations. The boundary value problem is converted to a system of nonlinear equations which are then solved by a Matlab nonlinear equation solver fsolve integrated with a Matlab ODE solver ode15s. The effects of selected control parameters (first order slip, second order slip, thermal slip, microorganism slip, blowing, nanofluid parameters) on the non-dimensional velocity, temperature, nanoparticle volume fraction, density of motile micro-organism, skin friction coefficient, heat transfer rate, mass flux of nanoparticles and mass flux of microorganisms are analyzed. Our analysis reveals that a higher blowing parameter enhances micro-organism propulsion, flow velocity and nano-particle concentration, and increases the associated boundary layer thicknesses. A higher wall slip parameter enhances mass transfer and accelerates the flow. The MATLAB computations have been rigorously validated with the second-order accurate finite difference Nakamura tri-diagonal method. The current study is relevant to microbial fuel cell technologies which combine nanofluid transport, bioconvection phenomena and furthermore can be applied in nano-biomaterials sheet processing systems.