Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-49214-w

Links

Tools

Export citation

Search in Google Scholar

The role of NaV channels in synaptic transmission after axotomy in a microfluidic culture platform

Journal article published in 2019 by Nickolai Vysokov ORCID, Stephen B. McMahon ORCID, Ramin Raouf ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractVoltage gated sodium channels are key players in aberrant pain signaling and sensitization of nociceptors after peripheral nerve injury. The extent to which sodium channel activity after injury contributes to synaptic transmission at the first pain synapse however remains unclear. To investigate the effect of axotomy on synaptic transmission between dorsal root ganglia neurons and dorsal horn neurons, we reconstructed the first pain synapse in a novel microfluidic based compartmentalized cell culture system, which recapitulates the connectivity of peripheral pain signaling. We show that following axotomy of the distal axons, inhibition of NaV1.7 and NaV1.8 sodium channels in incoming presynaptic DRG axons is no longer sufficient to block activation of these axons and the resulting synaptic transmission to dorsal horn neurons. We found that blockade of NaV1.6 activity is highly effective in reducing activation of incoming axons contributing to synaptic transmission after axotomy of DRG neurons. The microfluidic culture system described here offers an in vitro platform to recapitulate and study the first pain synapse.