Published in

Oxford University Press (OUP), Journal of Neuropathology & Experimental Neurology, 10(78), p. 922-929, 2019

DOI: 10.1093/jnen/nlz075

Links

Tools

Export citation

Search in Google Scholar

Frequent Detection of Pituitary-Derived PrPres in Human Prion Diseases

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Human prion diseases including sporadic Creutzfeldt-Jakob disease (sCJD), inherited prion diseases, and acquired human prion diseases are lethal neurodegenerative diseases. One of the major sources of iatrogenic Creutzfeldt-Jakob disease was human growth hormone (hGH-iCJD) derived from contaminated cadaveric pituitaries. The incidence of hGH-iCJD has decreased since changing from growth hormone extracted from human cadaveric pituitaries to recombinant pituitary hormones. However, extensive analysis on the localization and detecting of abnormal prion protein in the pituitary gland are limited. In this study, we examined 9 autopsied brains and pituitary glands from 6 patients with prion disease (3 Gerstmann-Sträussler-Scheinker disease, 2 sCJD, and 1 dura mater graft-associated CJD) and 3 individuals with nonprion diseases. Western blot analysis of pituitary samples demonstrated unique glycoforms of normal cellular prion protein with molecular weights of 30–40 kDa, which was higher than the typical 25–35 kDa prion protein in brains. Proteomic analysis also revealed prion protein approximately the molecular weight of 40 kDa in pituitary samples. Moreover, proteinase K-resistant Prion protein was frequently detected in pituitary samples of the prion diseases. Immunohistochemistry for Prion protein revealed mosaic cellular distribution preferentially in growth hormone- or prolactin-producing cells.