Published in

Oxford University Press, Molecular Biology and Evolution, 7(27), p. 1630-1644, 2010

DOI: 10.1093/molbev/msq049

Links

Tools

Export citation

Search in Google Scholar

Atypical subunit composition of the chlorophycean mitochondrial F1FO ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background. In yeast, mammals, and land plants, mitochondrial F(1)F(O) ATP synthase (complex V) is a remarkable enzymatic machinery which comprises about 15 conserved subunits. Peculiar among eukaryotes, complex V from Chlamydomonadales algae (order of chlorophycean class) has an atypical subunit composition of its peripheral stator and dimerization module, with 9 subunits of unknown evolutionary origin (Asa subunits). In vitro, this enzyme exhibits an increased stability of its dimeric form, and in vivo, Chlamydomonas reinhardtii cells are insensitive to oligomycins, which are potent inhibitors of proton translocation through the F(O) moiety. Methodology/Principal Findings. In this work, we showed that the atypical features of the Chlamydomonadales complex V enzyme are shared by the other chlorophycean orders. By biochemical and in silico analyses, we detected several atypical Asa subunits in Scenedesmus obliquus (Sphaeropleales) and Chlorococcum ellipsoideum (Chlorococcales). In contrast, Complex V has a canonical subunit composition in other classes of Chlorophytes (Trebouxiophyceae, Prasinophyceae, and Ulvophyceae) as well as in Streptophytes (land plants) and in Rhodophytes (red algae). Growth, respiration and ATP levels in Chlorophyceae were also barely affected by oligomycin concentrations that affect representatives of the other classes of Chlorophytes. We finally studied the function of the Asa7 atypical subunit by using RNA interference in C. reinhardtii. Although the loss of Asa7 subunit has no impact on cell bioenergetics or mitochondrial structures, it destabilizes in vitro the enzyme dimeric form and renders growth, respiration and ATP level sensitive to oligomycins. Conclusions/Significance. Altogether, our results suggest that the loss of canonical components of the Complex V stator happened at the root of chlorophycean lineage and was accompanied by the recruitment of novel polypeptides. Such a massive modification of Complex V stator features might have conferred novel properties, including the stabilization of the enzyme dimeric form and the shielding of the proton channel. In these respects, we discuss an evolutionary scenario for F(1)F(O) ATP synthase in the whole green lineage (i.e. Chlorophyta and Streptophyta).