Published in

American Astronomical Society, Astrophysical Journal, 2(881), p. 144, 2019

DOI: 10.3847/1538-4357/ab245b

Links

Tools

Export citation

Search in Google Scholar

The Planetary Accretion Shock. II. Grid of Postshock Entropies and Radiative Shock Efficiencies for Nonequilibrium Radiation Transport

Journal article published in 2019 by Gabriel-Dominique Marleau ORCID, Christoph Mordasini ORCID, Rolf Kuiper ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In the core-accretion formation scenario of gas giants, most of the gas accreting onto a planet is processed through an accretion shock. In this series of papers we study this shock because it is key in setting the structure of the forming planet and thus its postformation luminosity, with dramatic observational consequences. We perform one-dimensional gray radiation-hydrodynamical simulations with nonequilibrium (two-temperature) radiation transport and up-to-date opacities. We survey the parameter space of accretion rate, planet mass, and planet radius and obtain postshock temperatures, pressures, and entropies, as well as global radiation efficiencies. We find that the shock temperature is usually given by the “free-streaming” limit. At low temperatures the dust opacity can make the shock hotter but not significantly so. We corroborate this with an original semianalytical derivation of . We also estimate the change in luminosity between the shock and the nebula. Neither nor the luminosity profile depend directly on the optical depth between the shock and the nebula. Rather, depends on the immediate preshock opacity, and the luminosity change on the equation of state. We find quite high immediate postshock entropies ( –20 ), which makes it seem unlikely that the shock can cool the planet. The global radiation efficiencies are high ( ), but the remainder of the total incoming energy, which is brought into the planet, exceeds the internal luminosity of classical cold starts by orders of magnitude. Overall, these findings suggest that warm or hot starts are more plausible.