Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Journal of Analytical Toxicology, 7(43), p. 520-527, 2019

DOI: 10.1093/jat/bkz030

Links

Tools

Export citation

Search in Google Scholar

HighResNPS.com: An Online Crowd-Sourced HR-MS Database for Suspect and Non-targeted Screening of New Psychoactive Substances

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The number of new psychoactive substances (NPS) is constantly increasing. However, although the number might be large, most NPS have a low prevalence of use, so keeping screening libraries updated with the relevant analytical targets becomes a challenge. One way to ensure sufficient screening coverage is to use shared high resolution-mass spectrometry (HR-MS) databases, such as HighResNPS.com: a free, online, spreadsheet-format, crowd-sourced HR-MS database for NPS screening. The aims of this study were (i) to present the database to the scientific community and (ii) to verify that the HighResNPS database can be utilized in suspect screening workflows for LC–HR-MS instruments and software from four different instrument vendors. A sample was spiked with 10 NPS, and participating laboratories then analyzed the sample with their respective HR-MS vendor platforms and the HighResNPS database. The HighResNPS data were obtained via a spreadsheet converted to fit the import specifications of the different vendor platforms. Suspect screening was performed using LC–HR-MS vendor platforms from Thermo Fisher, Waters, Bruker and Agilent. All 10 NPS were identified in at least three workflows used for the four different vendor platforms. Multiple users have submitted data to HighResNPS for the same NPS, which resulted in multiple true-positive identifications for these NPS. Suspect screening with LC–HR-MS can be based on diagnostic fragment ions reported by users of different vendor platforms and can support NPS identification in biological samples and/or seizure analyses when no reference standard is available in-house. The present work clearly demonstrates that HighResNPS data is compatible with instruments and screening software from at least four different vendor platforms. The database can thus serve as a useful add-on in LC–HR-MS screening workflows.