Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Protein Science, 9(20), p. 1632-1637, 2011

DOI: 10.1002/pro.693

Links

Tools

Export citation

Search in Google Scholar

Structure of a novel thermostable GH51 α-L-arabinofuranosidase from Thermotoga petrophila RKU-1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

α-l-arabinofuranosidases (EC 3.2.1.55) participate in the degradation of a variety of l-arabinose-containing polysaccharides and interact synergistically with other hemicellulases in the production of oligosaccharides and bioconversion of lignocellulosic biomass into biofuels. In this work, the structure of a novel thermostable family 51 (GH51) α-l-arabinofuranosidase from Thermotoga petrophila RKU-1 (TpAraF) was determined at 3.1 Å resolution. The TpAraF tertiary structure consists of an (α/β)-barrel catalytic core associated with a C-terminal β-sandwich domain, which is stabilized by hydrophobic contacts. In contrast to other structurally characterized GH51 AraFs, the accessory domain of TpAraF is intimately linked to the active site by a long β-hairpin motif, which modifies the catalytic cavity in shape and volume. Sequence and structural analyses indicate that this motif is unique to Thermotoga AraFs. Small angle X-ray scattering investigation showed that TpAraF assembles as a hexamer in solution and is preserved at the optimum catalytic temperature, 65°C, suggesting functional significance. Crystal packing analysis shows that the biological hexamer encompasses a dimer of trimers and the multiple oligomeric interfaces are predominantly fashioned by polar and electrostatic contacts.